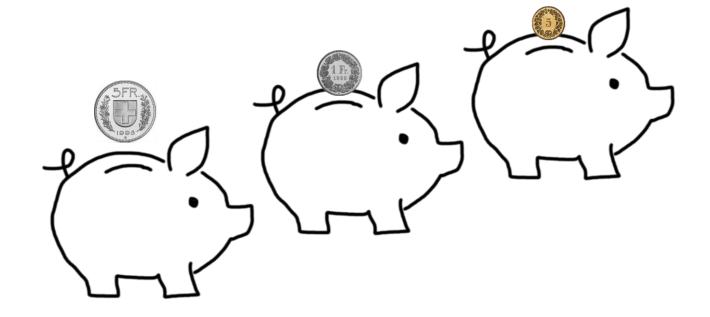
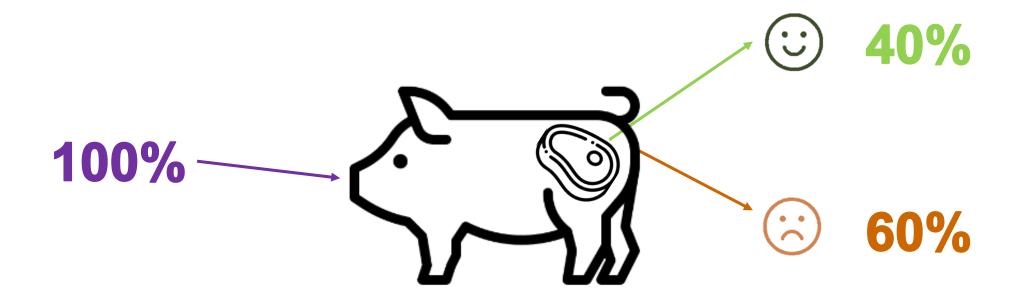
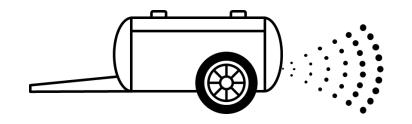


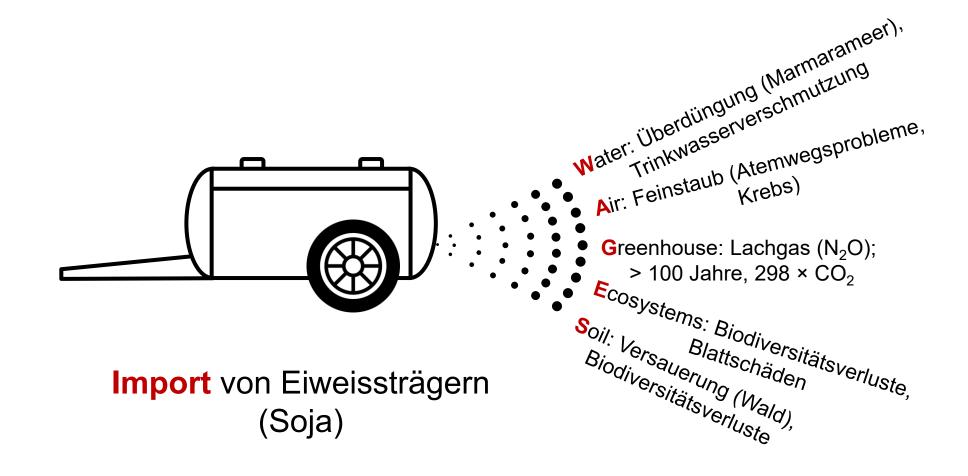
Zucht von Schweinen mit höherer Proteineffizienz: Die aktuelle Ausgangslage

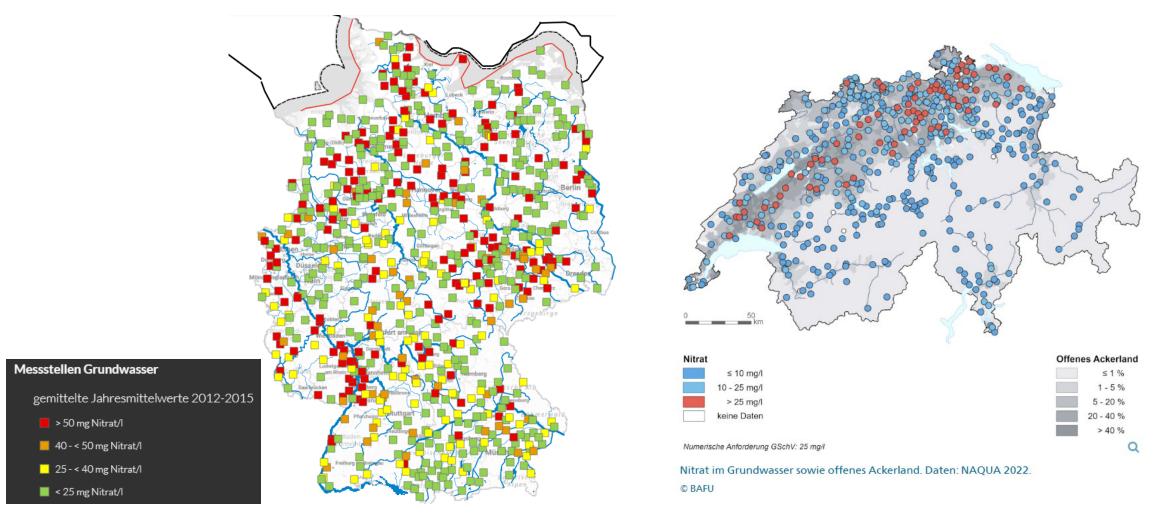

Claudia Kasper Tierische GenoPhenomik Agroscope

- 24. Internationale Bioland-Schweinefachtagung
- 20. Februar 2025


Proteineffizienz


Proteineffizienz ≠ Futtereffizienz


Aufnahme und Ausscheidung von Proteinen


Proteineffizienz = Proteinansatz (Muskelmasse)
Proteinaufnahme (Nahrung)

Schäden an Umwelt und menschlicher Gesundheit

Schäden an Umwelt und menschlicher Gesundheit

Umweltbundesamt:

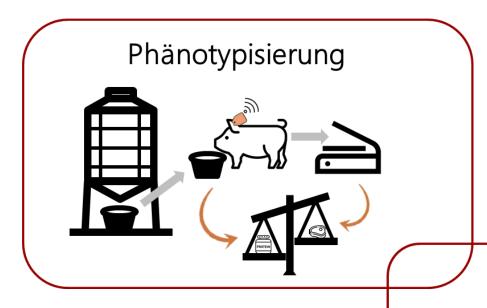
 $https://gis.uba.de/maps/resources/apps/nitratbericht_eu_richtlinie/index.html?lang=de$

Bundesamt für Umwelt:

https://www.bafu.admin.ch/bafu/de/home/themen/wasser/fachinformationen/zustand-dergewaesser/zustand-des-grundwassers/grundwasser-qualitaet/nitrat-im-grundwasser.html/#

Komplexe Probleme haben nicht nur eine Lösung

- Reduktion der Bestände
- «Circular Agriculture» (Suissebilanz seit 1998)
- Schleppschlauch
- Abdecken von Güllebehältern


- Ernährung
 - Reduktion von Proteinen (Mehrphasenfütterung – precision feeding)
 - Heimische Eiweissträger
 - «Feed no food»
- Genetik

Zucht auf erhöhte Proteineffizienz

Versuchsaufbau

fondation sur la croix

Projekte Landwirtschaft

Genotypisierung

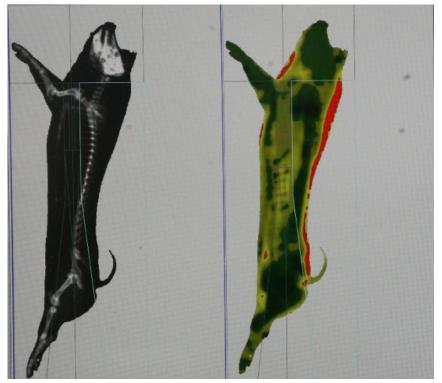
~1,000 Schweine HD-genotypisiert und low-pass (1X) sequenziert

Tiere (1'071 Schweine)

Ernährung: 80% des Rohproteins der Empfehlung (80% ess. AS)

Тур	Phase	Rohprotein (g/kg)	Verd. Lysin (g/kg)
Empfehlung	Aufzucht	163	9.72
	Ausmast	140	7.80
Diese Studie	Aufzucht	128	7.80
	Ausmast	112	6.06

- Haltung gemäss Schweizer Tierschutzverordnung in Gruppen (Minimum 1m²/Schwein)
- Futterautomaten mit individueller Erkennung mittels RFID (Schauer Maschinenfabrik GmbH & Co. KG)
- Schlachtung bei ca. 110 kg Lebendgewicht



Phänotypisierung

Dualenergie Röntgen-Absorptiometrie (DXA)

$$\hat{N} = -77.239 + 0.037 \times lean_{DXA}$$

Durchsatz:

4-8 Schlachtkörper pro Stunde

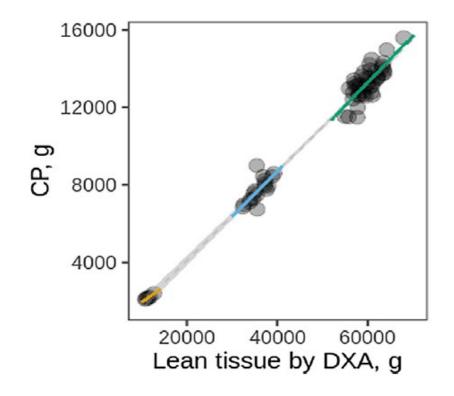
Phänotypisierung

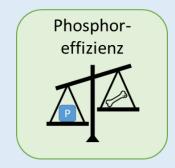
Dualenergie Röntgen-Absorptiometrie (DXA)

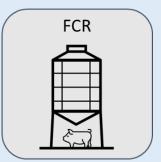
Kalibrierungsstudie Magerfleischanteil DXA vs. Protein/N-Gehalt

chemische Analysen

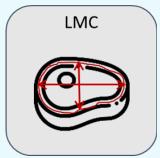
Hohe Genauigkeit (R²=0.98) und Präzision (rCV=4.4%)

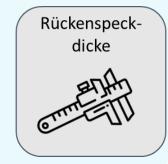

Knochenmineralisierung (P) und Fettgehalt möglich

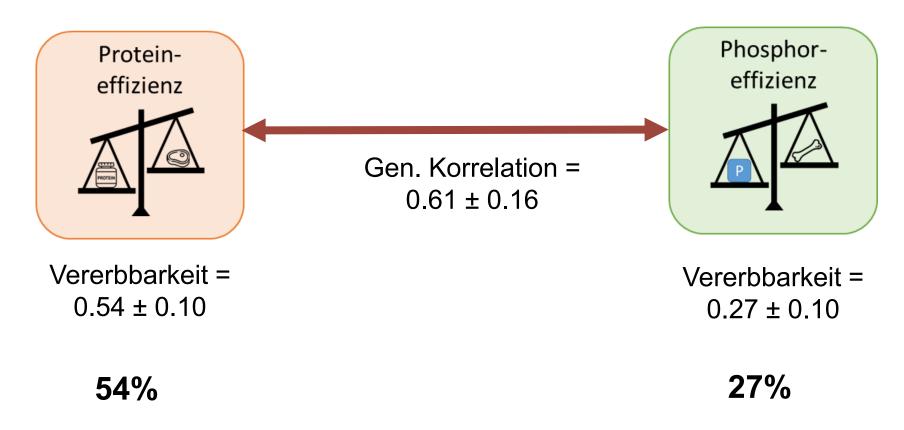

Schlachthälften, aber auch Lebendmessung (leichte Narkose)

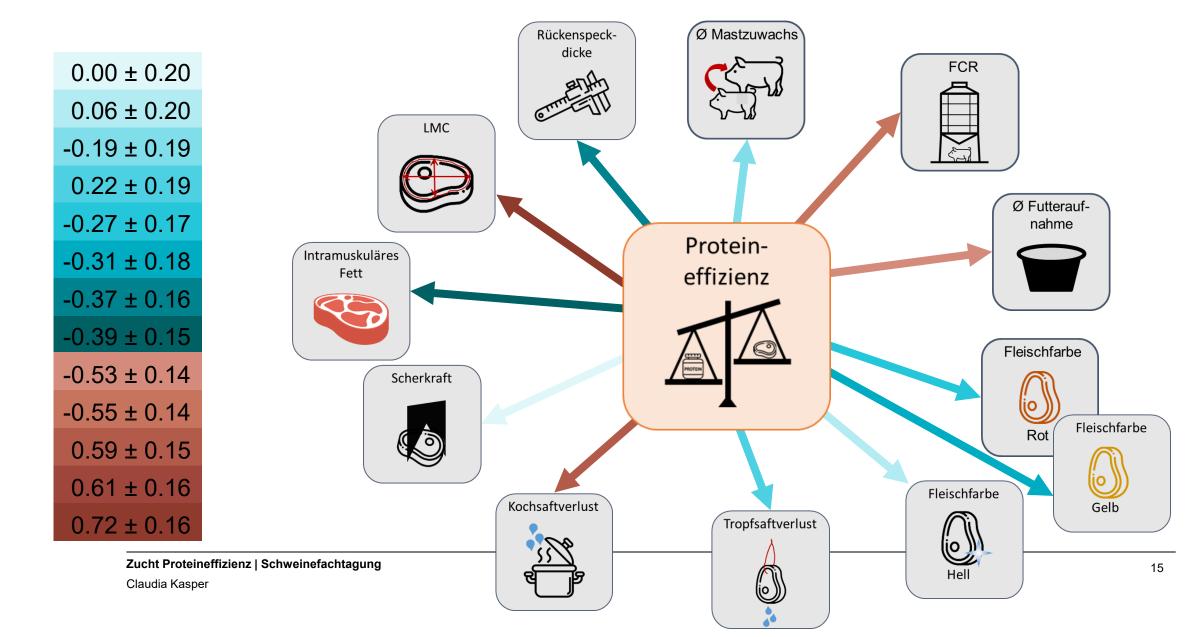

Kontinuierliche Verbesserung der Methode – H2020 Pigweb

♥ Zusätzliche Merkmale








(510 Schweine)

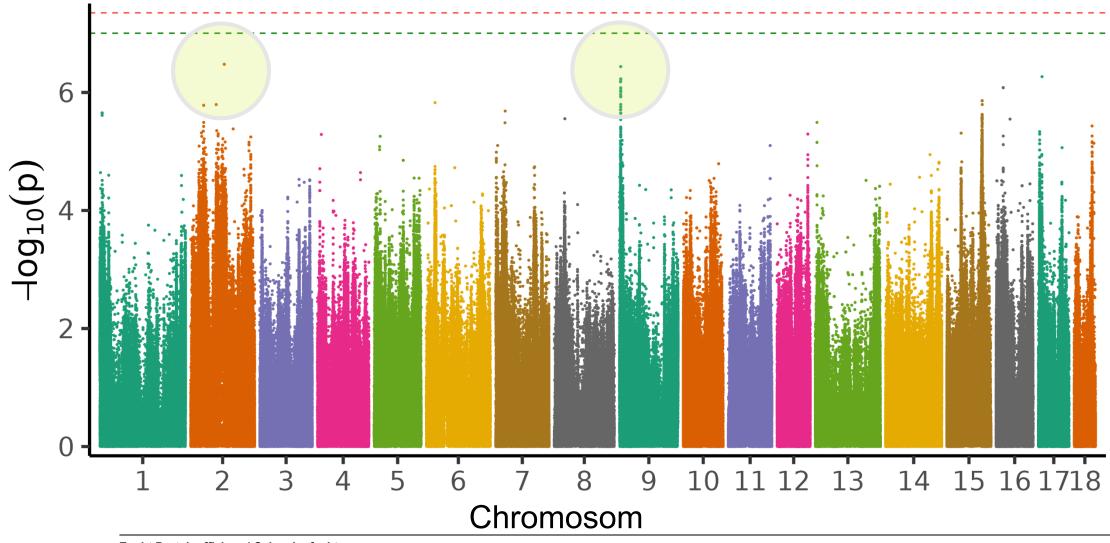
Vererbbarkeit und genetische Korrelationen

der beobachteten Variation aufgrund genetischer Unterschiede

Vererbbarkeit und genetische Korrelationen

Zwischenfazit

Zucht ist realistisch!


- Merkmal
 - hat hohe Relevanz
 - ist messbar
 - ist vererbbar
- Phosphoreffizienz wird zu gewissen Grad mitselektiert
- Zielkonflikte handhabbar

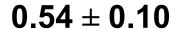
Welche Genomvarianten stehen mit der Proteineffizienz in Verbindung?

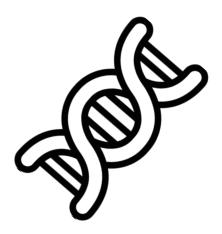
♥ Genomweite Assoziationsstudie (~ 1'000)

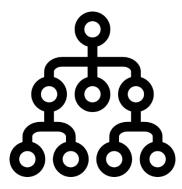
Genomweite Assoziationsstudie

Chromosom 2

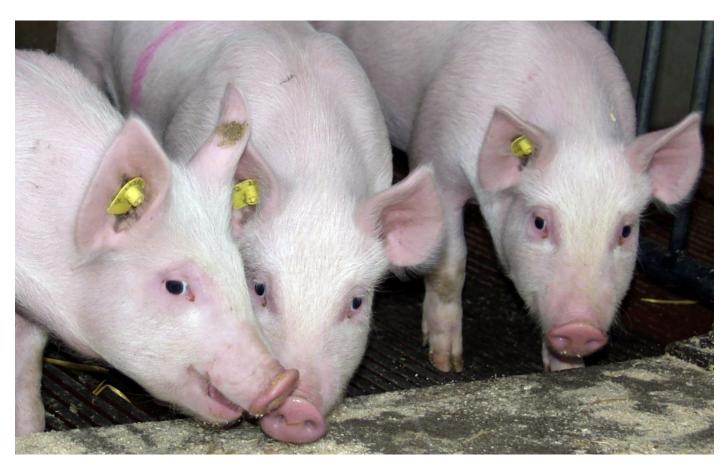
- **COL23A1**:
 - Cholesterinspiegel (Schwein)
 - Body-Mass-Index
 - Taille-Hüfte-Verhältnis
 - Gewichtszunahme (Mensch)
- CLK4 und PHYKPL:
 - Stickstoffmetabolismus
 - Stickstoffausscheidung (Kühe)


Chromosom 9


- PPFIBP2, OLFML1, SYT9, RBMXL2, NLRP14, ZNF215, olfaktorische Rezeptor-Gene:
- Zusammenhang mit
 - Futteraufnahme und -verwertung
 - Stoffwechsel von Muskel- und Fettgewebe
 - Körpergewicht
 - Milchprotein
 - Immunfunktion


Genomweite Assoziationsstudie

genomische Vererbbarkeit nahe an Pedigree-Vererbbarkeit


$$0.42 \pm 0.05$$

Zwischenfazit

- Aufwändige Phänotypisierung: schwierig, nötige Stichprobengrösse zu erreichen
- Genomische Varianten auf Chromosom 2 und 9 vielversprechend
- Meiste Vererbbarkeit in genomischen Daten «wiedergefunden»
- Genomische Selektion scheint möglich

Herausforderungen

Phänotypisierung (Messung auf Einzeltierebene) mit DXA

Durchsatz:

4-8 Schlachtkörper pro Stunde

Ausblick

Indirekte Selektion von Proteineffizienz via Futterumwandlung (FCR)?

Logische Überlappung Proteineffizienz – FCR, aber:

- direkte Selection effektiver und zielgerichteter (de Verdal et al., 2011; Lassaletta et al., 2019)
- Unklar, ob Proteineffizienz & FCR genetisch korreliert sind (Saintilan et al., 2013; Ewaoluwagbemiga et al., 2023a; Schmid et al., 2024) und ob diese über die Selektionsdauer konstant bleiben
- Wenig Überlappung in assoziierten Genomabschnitten
- Selektion auf FCR könnte vor allem Energieeffizienz, nicht Proteineffizienz erhöhen
- Schwierig, überhaupt assoziierte Genregionen für FCR zu finden (Ewaoluwagbemiga et al., 2023b)

Ausblick

Genomische Selektion

Proteineffizienz ist ein komplexes Merkmal:

- Sehr hohe Anzahl von Genvarianten, die möglicherweise assoziiert sind
- Abhängig von Wachstumsphase, Geschlecht, Ernährung
- Über das ganze Genom verteilt
- Schwer zu lokalisieren (belastbare statistische Evidenz)
- Etablierung einer ausreichend grossen Referenzpopulation für genomische Selektion schwierig
- Hochdurchsatz-Phänotypisierungsmethode benötigt!

Agroscop

Danksagung

Esther Ewaoluwagbemiga (Doktorandin im Projekt)

- Guiseppe Bee (Schweineernährung)
- Patrick Schlegel (Suissebilanz, Nährstoffkreisläufe)
- Marion Girard (Schweineernährung)

Versuchsstall und Schlachthof:

- Guy Maïkoff
- Bertrand Egger
- Fabrice Sansonnens

Chemie- und Biologielabor:

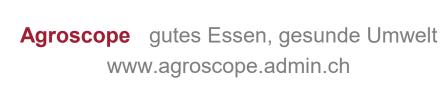
- Sébastien Dubois
- Paolo Silacci

Bildnachweise:

Fotos: Agroscope (Olivier Bloch, Patrick Schlegel, Claudia Kasper), Rasbak CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1707757

Grafiken und Animationen: erstellt mit Icons von "Smashicons", "DinosoftLabs", "Icongeek26", "surang", "photo3idea_studio" und "Freepik" (Quelle: www.flaticon.com)

Projekte Landwirtschaft





claudia.kasper@agroscope.admin.ch

V

Rezeptur Futter

Rohstoff	% Aufzuchtfutter	% Ausmastfutter
Gerste	50.00	50.00
Hafer	5.14	6.30
Mais	13.56	16.18
Weizen	20.00	20.00
Weizenfuttermehl	0.50	0.50
Kartoffelprotein	1.96	0.11
Rapskuchen >9% RL	3.82	2.41
Diffusionsschn getr	2.00	2.00
L-Lysin-HCl	0.34	0.27
DL-Methionin	0.01	0.00
L-Threonin	0.06	0.04
MCP	0.51	0.26
Kalk, kohlensaurer	1.09	0.97
Natriumchlorid (Vie	0.30	0.25
Pellan	0.30	0.30
ALP-S 467 Mast	0.40	0.40
Natuphos 5000 G	0.01 0.01	

Dietary raw protein (digestible lysine content (g/kg)) ^a				
Grower (20–60 kg BW)	Finisher I (60–100 kg BW)	1		
163 (9.72) 128 (7.80)	140 (7.80) 112 (6.06)	[Empfehlung*] [diese Studie]		

 $^{{\}bf Zucht\ Proteineffizienz\ |\ Schweinefachtagung}$

^{*} Fütterungsempfehlung Schweine (Agroscope)