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Abstract
One model of signal evolution is based on the notion that behaviours become increasingly detached from their original 
biological functions to obtain a communicative value. Selection may not always favour the evolution of such transitions, for 
instance, if signalling is costly due to predators usurping signal production. Here, we collected inertial movement sensing 
data recorded from multiple locations in free-ranging horses (Equus caballus), which we subjected to a machine learning 
algorithm to extract kinematic gestalt profiles. This yielded surprisingly rich and multi-layered sets of information. In par-
ticular, we were able to discriminate identity, breed, sex and some personality traits from the overall movement patterns of 
freely moving subjects. Our study suggests that, by attending to movement gestalts, domestic horses, and probably many 
other group-living animals, have access to rich social information passively but reliably made available by conspecifics, a 
finding that we discuss in relation with current signal evolution theories.
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Introduction

Horses are well known for their highly developed perceptual 
abilities of processing movement patterns (Budiansky 1997; 
Murphy and Arkins 2007), an ability that may allow them 
to make inferences about the intentions and motivational 
states of conspecifics and, after domestication, their human 
caretakers (Pfungst 1907). We were interested in the origins 
of these advanced perceptual abilities in domestic horses. 
We reasoned that their evolution must have emerged from 
richly available postural information and movement gestalts, 
naturally produced by conspecifics during daily activities in 

this highly social species (Laidre and Johnstone 2013). To 
our knowledge, close to nothing is known about the kind 
of information naturally available from horses’ body move-
ments, despite the likely importance of this channel of infor-
mation for the evolution of perceptive abilities.

In our study, we investigated whether and how intrinsic 
and context-unspecific movement patterns in freely moving 
domestic horses convey social information. Over evolution-
ary times, horses have presumably been exposed to high 
predation pressure, with no real antipredator strategies apart 
from rapid flight (McGreevy 2004). The ability to recognise 
and interpret others’ movement patterns may be particularly 
beneficial in such species due to the low signal-to-noise ratio 
and large variance in information content, a coding strategy 
that follows subtlety rather than conspicuousness (Laidre 
and Johnstone 2013). It is also likely that, for similar rea-
sons, the evolution of a rich signal repertoire to coordinate 
social interactions was equally prevented to avoid attract-
ing predators (Budiansky 1997), especially if alternative 
modes of information transfer were already effective. One 
hypothesis, therefore, is that natural selection has favoured 
alternative ways of enabling social coordination, bypassing 
the evolution of dedicated acoustic or visual signals espe-
cially at close range, as commonly found in non-human 
primates (Arbib et al. 2008; Budiansky 1997; Laidre and 
Johnstone 2013). This is not to say that horses do not have a 
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rich communication repertoire, but they may not rely much 
on this ability when travelling or when exposure to predation 
is elevated for other reasons.

We thus focused on information constantly available dur-
ing natural movements of free-ranging horses. To this end, 
we recorded movement patterns of freely ranging horses via 
accelerometers mounted at different locations of their bod-
ies. We temporally aligned the recordings from all sensors 
and randomly selected brief elements from these record-
ings for further analyses. This consisted of extracting statis-
tical properties that we then classified using support vector 
machines (SVMs). Classification was for the class labels 
identity, sex, breed and two behavioural traits (sensitivity, 
fearfulness). We first trained an SVM algorithm on a training 
set consisting of 80% of the extracted feature vectors to cre-
ate a model that best separated the classes (e.g., sex: ‘mare’, 
‘stallion’, and ‘gelding’). We then used the remaining 20% 
of the extracted feature vectors as test samples to determine 
the percentage correct classification of all five categories: 
‘identity’ (horse 1, horse 2, … horse n), ‘breed’ (warmblood, 
coldblood (Edwards 1994)), ‘sex’ (mare, stallion, gelding), 
fearfulness (four levels) and sensitivity (five levels).

Accelerometers have already been used in studies of 
animal behaviour (Gerencser et al. 2013; Graf et al. 2015). 
To our knowledge, however, the previous studies have been 
based on data from one sensor only, which are unlikely to 
capture the complex nature of animals’ movement patterns. 
By positioning six inertial sensors at different body loca-
tions, we sought to collect data to determine more complex 
gestalt profiles, a holistic processing method common in 
studies of face perception (Dahl et al. 2007; Tanaka and 
Farah 1991), forensic analysis (Vogelsang et al. 2017) and 
Chinese character recognition (Mo et al. 2015). Acceler-
ometers have also been used in horses to address a range 
of applied problems relating to health, anomalies and per-
formance, such as to detect lameness (Keegan et al. 2002; 
McCracken et al. 2012; Starke et al. 2012; Thomsen et al. 
2010), analyse rhythmical movements of horse and rider, 
jumping patters or gait (Burla et al. 2014; Barrey and Gal-
loux 1997), compare hoof ground impact on different sur-
faces (Ryan et al. 2006; Thomason and Peterson 2008) and 
horse shoes (Dyhre-Poulsen et al. 1994) and evaluate racing 
abilities (Leleu et al. 2005).

Here, we were interested in a more basic scientific prob-
lem, that is, whether horses could extract social information 
from observing others’ movement patterns. We focussed on 
a few very basic social parameters, i.e., identity, breed, sex, 
fearfulness and sensitivity. Horses can individuate conspecif-
ics from their signal production across domains (audio–vis-
ual) (Proops and McComb 2012; Proops et al. 2009) and are 
sensitive to others’ facial expressions (Wathan and McComb 
2014; Wathan et al. 2016), but it is not known whether these 
abilities generalize to movement patterns. While we think 

it is likely that this is the case, the main purpose of our 
research is more to demonstrate a principle, which is that 
naturally available social attributes could be identified 
through movement patterns.

Materials and methods

Subjects

Subjects were 26 healthy horses of warm-blooded and cold-
blooded breeds. We used 15 warm-blood breed individuals 
(2 stallions, age range (years): M = 13.5, min = 13, max = 14; 
6 geldings, age: M = 6.5, min = 5, max = 9; 7 mares, age: 
M = 7.43, min = 5, max = 17) and 11 cold-blood breed indi-
viduals (4 stallions, age: M = 7.5, min = 5, max = 11; 2 geld-
ings, age: M = 8, min = 6, max = 10; 5 mares, age: M = 6.4, 
min = 2, max = 10). None of the individuals suffered from 
any orthopaedic or neurological disorders.

Data collection

Data were collected at the Swiss National Stud Farm in 
Avenches, Switzerland, in April and May 2016. We used a 
horse-riding arena of 18 m diameter and sand–dirt footing, 
providing substantial cushion and traction. In each session, 
we used one horse at the time. Each session contained (1) 
a preparation phase during which the horse was equipped 
with custom-made felt pouches, providing accurate and com-
parable positioning of the sensors, (2) a habituation phase 
with the environment and equipment attached in prepara-
tion phase, (3) a sensor synchronization phase, (4) a sen-
sor attachment phase, where sensors were placed into the 
pouches, and (5) a testing phase.

Preparation phase

Horses were equipped with a bridle, a saddle girth (surcin-
gle), custom-designed bandage boots for the left foreleg and 
the left hind leg and a bandage at the tail. Prior to the start 
of the experiment, we mounted two pouches to the bridle, 
one at the centre point of the noseband (‘muzzle’) and one 
on the crownpiece (headpiece) at the horse’s ‘poll’. We also 
attached one pouch to the surcingle at the highest point, 
place right behind the withers (‘back’), and one to the dock 
of the tail wrapped with a bandage centrally placed at a posi-
tion of 8 cm below the onset of the long, tick tail hair (‘tail’). 
Custom-designed bandage boots were placed at the foreleg 
on the ‘forearm’, just above the knee (carpus, carpal bone) 
and the chestnut, as well as at the hind leg on the ‘gaskin’ 
(‘second thighs’), above the point of hock (tarsal bones). 
Pouches were made of felt and of the following dimen-
sions: length = 7 cm, width = 5 cm, height = 3 cm. Using 
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these pouches we could ensure that the data loggers were 
positioned at fixed anatomical positions. Furthermore, the 
equipment did not cause any discomfort during locomotion.

Habituation phase

The horse was free to explore the arena and habituate to 
the new environment for about 5–10 min. It also served the 
purpose to establish initial contact between the horse and 
the experimenter.

Sensor synchronization phase

We first initiated data logging by turning on the individual 
sensors. We then placed them into a box, aligned accord-
ing to one predefined dimension, and shook rapidly in 
each direction for a couple of seconds. This procedure was 
simultaneously filmed and marked the onset of data record-
ing across loggers to ensure accurate alignment in the data 
post-processing.

Sensor attachment phase and experiment initiation

We activated sensors that were placed into the pouches on 
the horse (Supplementary Figure 1AB). Right after the sen-
sor attachment phase, we initiated the experiment by exer-
cising the horse. Recording samples can be seen in Supple-
mentary Figure 1CD. Since the horses were moving freely 
without a lunge rein, a strict protocol of behaviour was not 
possible and not desired. We aimed at natural movement 
patterns of horses and tolerated character specific behav-
ioural responses. In general, we let the horses walk, trot and 
canter/gallop for 30 min in total, covering both the right as 
well as the left sides. Commands were given by the handler 
to encourage the horse during trot and gallop. The amount 
of time per each gait was not pre-determined, but logically 
horses tended to walk longer than trot, canter or gallop. Gait 
frequency, however, did not influence the analysis, since 
the training and testing samples were selected with equal 
probabilities from each gait. In addition, we fivefold cross-
validated the analysis procedure, including the selection of 
training and testing samples.

Data analysis

We collected inertial data via custom-made miniature log-
gers, allowing to record tri-axial accelerometer, gyroscope 
and magnetometer data. For the analysis we focused solely 
on the accelerometer output [± 8 g, 16 bit, ± 4800 LSB/g 
(accel sensitivity)]. Sensors were factory-calibrated. Iner-
tial sensors were controlled by Arduino Pro Mini 328, 
5V/16 MHz micro-computers. Data loggers were temporally 
aligned by manually moving them rapidly in directions of 

all three axes and simultaneously filming them. In addition, 
we read out time stamps via a real time clock. We read out 
data at 128 Hz onto a SD card and later downloaded data 
files onto a PC for analysis.

Data pre‑processing and feature extraction

We first applied feature scaling to the raw values of each 
sensor and each axis by bringing all values into a range of 
[0, 1]. We then aligned these values and merged them to one 
file per individual, representing the unity-based normalized 
acceleration values of all sensors and all axes as a function of 
time. For each individual we extracted 100 non-overlapping 
segments at random points in time. Each segment consisted 
of 128 samples, equivalent to 1 s. For each of these segments 
and on all axes (ax, ay, az, ax/az, |a|) we extracted statistical 
features as follows: (1) standard deviation; (2) mean; (3) 
min; (4) max; (5) root mean square (rms); (6) auto-correla-
tion: height of main, height and position of second peak; (7) 
spectral peak features: height and position of first six peaks; 
(8) spectral power features: power of five adjacent frequency 
bands (edges: 0.5, 1.5, 5, 10, and 20 kHz); (9) skewness; 
and (10) peaks: number, std (width), and std (prominence). 
Importantly, the  ax/az component reflected the tangent of the 
cranio-caudal direction relative to the ground. The accelera-
tion magnitude (|a|) was equal to the sqrt(x2 + y2 + z2). In 
total, we calculated 105 features for each sensor, hence 630 
features for each 1-s segment. All features were normalized 
to a range of [0–1] (Supplementary Figure 1E). A similar 
approach on feature extraction has been used in quantifying 
movement of freely ranging dogs (Gerencser et al. 2013).

Classification algorithm

We used SVM, a supervised learning algorithm, to classify 
these segments. An SVM classification routine encom-
passes a training phase, during which a model will be 
derived that best separates samples of two classes, and a 
testing phase, during which the model will be evaluated by 
determining the performance on novel samples. We used 
the libsvm toolbox (Chang and Lin 2011) for implement-
ing the SVM algorithm. Inputs to the SVM algorithm were 
pre-determined 630-element feature vectors, as described 
above, split into 80% (160) training and 20% (40) testing 
samples. In the SVM algorithm we used a radial basis 
function (RBF) Kernel. The two unknown parameters, the 
soft margin (C) and the kernel parameter (gamma) (Cortes 
and Vapnik 1995), were determined in a fivefold cross-
validation procedure on dedicated smaller numbers of 
samples, trading classification errors penalty for stability 
and thus leading to a higher degree of generalization rather 
than over-optimization. C and gamma were determined 
individually for each comparison. We then fed all training 
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samples as well as their labels, the correct classification 
outputs, into the SVM algorithm to generate the best fitting 
model. All testing samples, i.e., unknown, novel inputs, 
were then fed into the model, predictions obtained by the 
model and compared to the desired output.

We applied this principle to the following class labels: 
‘identity’ (‘horse 1’, ‘horse 2’,…horse n), ‘breed’ (‘cold-
blooded’, ‘warm-blooded’), ‘sex’ (‘mare’, ‘stallion’, ‘geld-
ing’), ‘fearfulness’ (three classes of varying degrees, see 
below) and ‘sensitivity’ (four classes of varying degrees, 
see below).

We obtained performance scores for all attribute labels 
as described above in a pairwise fashion, i.e., always two 
class labels (Fig. 1). Figure 1 shows the performance 
scores as percentages of prediction. For example, assum-
ing that the actual outcome (y-axis) was ‘warmblood’ 
(WB) as the type of horse ‘breed’ (Fig. 1c), then 80.5% 
were correctly predicted (x-axis) and 19.5% were incor-
rectly predicted. Importantly, for classes with more than 
two labels, the chance level was still 50% due to the pair-
wise comparisons of SVM.

Feature selection

It is important to note that classification performance is 
generally influenced by the number of feature dimensions. 
Therefore, in a second step, we aimed at optimising the 
model by reducing the feature dimensions to avoid overfit-
ting to irrelevant dimensions (noise), save storage space 
and reduce computation time. We, therefore, implemented 
two methods: (1) feature selection using a filter approach: 
with this approach we relied on the statistical features of 
our data by calculating t tests for each feature between the 
samples of the two classes of interest (Jafari and Azuaje 
2006; Liu et al. 2004). This procedure resulted in p value 
for each feature dimension reflecting the effectiveness 
of features for those two classes. (2) Sequential feature 
selection: on top of a selected subset of features individual 
feature dimensions was added (forward search) until there 
was no further improvement or a maximum of 20 features 
was reached (Li et al. 2004; Ressom et al. 2005). We use a 
hybrid method by combining these two approaches by first 
selecting statistically important feature dimensions and 
then sequentially searching for the best combinations of 
features (Fig. 2a). In this training period, we also applied 
a fivefold cross-validation routine. Figure 2a shows the 
means of all features (grey dots) and the 20 most discrimi-
native features (blue circles) of two horses (ID1 vs. ID2). 
As can be seen, the features selected deviated strongly 
from the diagonal line, indicating different expressions of 
those particular features for the given classes.

Control condition

We also calculated a performance baseline, which was deter-
mined by random labelling of training samples while main-
taining the remaining processing routine as described above. 
Reported in Fig. 1 are the performance scores after the 
hybrid method for feature selection. We further calculated 
the probability of statistical feature types among the selected 
features as a function of attribute (‘identity’, ‘breed’, ‘sex’, 
‘sensitivity’, ‘fearfulness’) and anatomical sensor position 
(‘forearm’, ‘gaskin’, ‘back’, ‘tail’, ‘muzzle’, ‘poll’). To calcu-
late whether correct classification occurred more often than 
incorrect classification, we used χ2-tests of independence. 
We, therefore, compared the correct classification (observed 
values, see diagonals in Fig. 1a, c, e, g, i) with an expected 
outcome of 50%. We calculated proportional contribution 
of features for each attribute and each anatomical location 
(Fig. 3a–e) and used a hierarchical clustering algorithm to 
illustrate the similarity of gestalt profiles (Fig. 3f).

Statistical tests

We used Chi-square tests of independence to evaluate 
whether there was a significant association between the cor-
rect and incorrect classifications for all attributes.

Personality traits

Aside from the intrinsic information (‘identity’, ‘breed’, 
‘sex’) we included two personality traits (‘sensitivity’, 
‘fearfulness’) in our analysis. These traits were measured in 
separate experimental sessions and are parts of the complete 
personality tests (CPT) (Lansade et al. 2016).

Tactile sensitivity

The tactile sensitivity test describes the degree to which 
an individual responds to tactile stimulation, reflecting a 
basic sensory disposition to environmental stimulation. The 
underlying assumption is that responsiveness toward tactile 
stimulation generalizes to other sensory domains. The test-
ing procedure is as follows: The horse was held immobile in 
hand. Filaments (Frey nylon filaments of 0.008, 0.02, 1 and 
300 g, Stoelting, IL, USA) were individually perpendicu-
larly applied to the base of the withers. Constant pressure 
was applied to the filament until it bent. The procedure was 
repeated for all filaments alternating the left and right sides 
of the withers. A natural response of the horse is to shiver 
the platysma muscle to a perceived tactile stimulation. The 
response ratio describes the tactile sensitivity.
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Fig. 1  Confusion matrices of 
classification outcome. Matrices 
a, c, e, g, and i show the actual 
test conditions for the attrib-
utes ‘identity’, ‘breed’, ‘sex’, 
‘fearfulness’ and ‘sensitiv-
ity’. Matrices b, d, f, h and j 
show the control conditions. 
Each confusion matrix shows 
the ‘actual’ outcome (y-axis) 
against the ‘predicted’ outcome 
(x-axis). Percentage correct 
classifications are indicated 
on the diagonal line in each 
confusion matrix. Colour codes 
indicate the percentage correct 
classification with 100% in 
black and 0% in white
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Fearfulness

A critical aspect of this test is the suddenness of a stimulus 
occurring. The horse was held in hand via a long rein, while 
a second person was positioned at given distance (first trial 
at 5 m, second trial at 2 m) in front of the horse. The second 
person then rapidly opened and closed a black umbrella and 
put it down on the floor in front of herself. The evasion away 
from the umbrella was quantified via video recordings and 
averaged across trials (2 and 5 m distances).

Results

Our model was able to classify ‘identity’ at 95.8% (Fig. 1a), 
‘breed’ at 82.9% (Fig. 1c) and ‘sex’ at 86.9% (Fig. 1e) cor-
rect classifications. The two personality traits ‘fearfulness’ 
and ‘sensitivity’ were classified correctly at 81.2% (Fig. 1g) 
and 86.5% (Fig. 1i), respectively. We contrasted these clas-
sification results with a randomly expected outcome (con-
trol condition). The randomly expected outcome was 50% 
correct classification due to SVM’s pairwise comparisons. 
The actual performance of the control model was as follows: 
‘identity’: 49.8% (Fig. 1b); ‘breed’: 52.6% (Fig. 1d); ‘sex’: 
50.8% (Fig. 1f); ‘fearfulness’: 46.3% (Fig. 1h); ‘sensitivity’: 
51.4% (Fig. 1j). We found that, in all test runs, occurrences 
of correct classifications (i.e., when the predicted outcome 
matched the actual outcome) were significantly higher than 
incorrect classifications (i.e., when the predicted outcome 
did not match the actual outcome) (Table 1). This was not 
the case in the control conditions, as expected, ruling out 

idiosyncratic response patterns in the test runs not due to 
the attributes under investigation. The largest portion of mis-
classification was in the attribute ‘sex’, where geldings and 
mares were mutually misclassified more often than expected. 
We found a difference in geldings being more often misclas-
sified as mares (11.9%), and vice versa (10.8%), compared 
to the expected level of misclassification (7.85, 7.65%): (χ2 
(1, N = 100) = 13, p = 0.001).

How is information conveyed?

To determine which of the extracted features accounted for 
the high classification rates, we analysed the outcome of 
the feature selection procedure prior to classification (see 
“Materials and methods” and Fig. 2a, b). We were inter-
ested in the explanatory power of the statistical features 
with regard to attributes and anatomical locations (Fig. 3d). 
Overall, the means of the signal elements in any of the three 
axes as well as the spectral peaks and spectral power played 
the most crucial roles (Fig. 3b, c), as visualized by the size 
of the circles. The importance of these features, however, 
slightly varied depending on the attribute (Fig. 3a, b). While 
‘identity’ could be explained to a large degree by variances 
in the means of the signal elements, ‘sex’, ‘fearfulness’ 
and ‘sensitivity’ could be best explained by a combination 
of spectral features and statistical means (Fig. 3a, b). The 
attribute ‘breed’ was best described via contributions of 
the means, spectral features and the statistical mean of the 
squares of the signal elements (RMS). Importantly, for each 
attribute a combination of distinct locations (sensors) con-
tributed to correct predictions (Fig. 3a, d). While ‘identity’ 

Fig. 2  Feature evaluation. a Feature selection for classification of 
ID1 vs. ID2. Grey dots illustrate the mean values of features for ID1 
(x-axis) vs. ID2 (y-axis). The blue circles mark the features selected 

by our hybrid feature selection procedure. b Feature selection for 
classification of ‘Mare’ vs. ‘Stallion’
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could be best accounted for by a combination of sensors at 
all anatomical locations, ‘breed’ and ‘sex’ were predomi-
nantly described by the poll and the tail in combination with 
other locations of minor importance. The personality trait 
‘fearfulness’ was best detectable via the gaskin, the poll and 
the tail, depicting a different configuration of anatomical 

locations than ‘sensitivity’, which mainly differentiated via 
the sensors at the head (poll and muzzle), the back and the 
tail. The importance of the sensory configuration is further 
highlighted in Fig. 4a.

We further compared the resulting gestalt profiles by cal-
culating a hierarchical cluster tree (Fig. 3f). It turned out that 

Fig. 3  Explanatory power of features and locations. a Feature prob-
abilities for each anatomical location (x-axis) and attribute (y-axis). 
Grey vertical lines separate the six locations (sensors). Each sepa-
ration contains 105 features (see “Materials and methods”). Prob-
abilities are only implied. Black vertical lines indicate the cumulative 
probabilities across attributes. b Probability of feature types (x-axis) 
by attributes (y-axis). Large circles indicate high probabilities, 
smaller circles low probability. c Probability of feature types (x-axis) 

by anatomical locations (y-axis). d Average feature probability per 
anatomical locations (x-axis) and attributes (y-axis). e Contribution 
(feature probability) for each attribute (as in d) compared with ran-
dom distribution (grey bars). Each bar shows the range of two stand-
ard deviations (95.4% of the variance). f Similarity of gestalt profiles. 
The heights of the inversely u-shaped elements in the tree indicate the 
Euclidean distance between the two profiles being connected
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‘breed’ and ‘fearfulness’ built one pair of close similarity 
and ‘sex’ and ‘sensitivity’ built another. ‘Identity’, however, 
due to a more equal contribution of all anatomical location, 
fell into its own class. In the next step we determined the 
degree to which each of the anatomical location differed 
from a random allocation of features to the six locations 
(Fig. 3e). In other words, do contributions of individual 
anatomical locations to the classification outcome deviate 
from a random distribution of features, where all locations 
contribute equally? We found that all (but two) locations 
were significantly different from the random distribution at 
a significance level of 5% (Fig. 3e: two standard deviations 
of random distribution shown in grey). Importantly, each 
attribute showed a set of locations that was over-represented 
(above the grey vertical bars in Fig. 3e), hence contribut-
ing positively to the classification outcome, and another set 
that was under-represented (below the grey vertical bars in 
Fig. 3e), hence being an unreliable source of information for 
that attribute. Figure 4b shows the under- (green circles) and 
over-represented locations (red circles) visually.

Discussion

One evolutionary model of communication is that both fixed 
cues and flexible signals originate from more basic, biologi-
cally functional processes by a process of ritualization. An 
interesting problem, therefore, is under what conditions such 
processes can evolve into communication signals and how 
this happens. One way by which selection favours the evolu-
tion of signals is by increasing the contrast, amplitude, or 
conspicuousness of an already existing behaviour.

In this study, we were interested whether movement 
gestalts of free-ranging horses contained social information 
potentially relevant for others, which would provide the 
breeding ground for signal evolution. Our learning algo-
rithm classified signaller attributes from kinematic move-
ment patterns with high accuracy. Information about identity 
was most accurate, resulting in correct classification of 96%, 
while breed, sex, and personality traits ranged somewhere 
between 80 to 90% correct classification, significantly higher 
than if randomly assigned to training samples. Our results 

thus highlight the information power of movement patterns, 
irrespective of gait, context or other external factors. The 
level at which the model derived information of complex 
attributes was intriguingly accurate, highlighting the advan-
tage of machine learning approaches over classic ethological 
methodology.

Another main finding in our study was that, by combin-
ing the results of distinct anatomical locations, classification 
was especially successful. For instance, the attributes ‘sex’, 
‘breed’, ‘sensitivity’ and ‘fearfulness’ was best discrimi-
nated by head movements (determined at the poll and muz-
zle) in combination with movements of the tail. For identity, 
the most successful combination was between movements 
of the gaskin, tail and back, further highlighting the gestalt 
nature of feature discrimination. Interestingly, misclassifi-
cations in ‘sex’ resulted in mares and geldings being often 
confused, reflecting the effects of castration of stallions, 
which tends to alter their behaviour towards a quieter, more 
easily-controllable, well-behaving and tractable “working” 
horse (Kiley 1976).

Is movement perceived as information?

Our analyses have shown that natural movement patterns can 
contain rich sets of information, but are they also processed 
by recipients? Experimental testing on the discrimination 
abilities of the different attributes would be a considerable 
challenge.

The following theoretical arguments, however, suggest 
that horses are expected to access information generated by 
movement patterns. First, movement patterns are readily 
available in this species, regardless of context. Information 
can thus be produced at virtually no extra costs, much in 
contrast to ritualised signals, and this may also provide less 
of a demand on receiver cognition. Second, feral horses are 
adapted to open grassland habitats, where the visual domain 
plays an important role, in contrast to visually dense forest 
habitats. Indeed, the acoustic repertoire of horses is rela-
tively small, consisting of mainly four types of vocaliza-
tions (whinny, nicker, squeal, and roar) (Kiley 1972). Visual 
cues, such as facial expressions (Wathan and McComb 2014; 
Wathan et al. 2016), are visible only in close proximity, sug-
gesting that movement patterns may be more efficient for 
information transfer at large distances. In contrast to other 
ungulates, social dominance in horses is not determined by 
size or weight (Duncan 1992; Feh 1990), but by social fac-
tors, such as age and migration status (Monard and Duncan 
1996). Overall, we find it plausible that movement patterns 
play a role in horse communication, a hypothesis that has 
already been put forward by early work on animal cognition 
(Pfungst 1907).

In our study, we assumed that, similarly to face dis-
crimination (Dahl et al. 2016; Fific and Townsend 2010), 

Table 1  Statistical values for all attributes evaluated using Chi-square 
tests of independence

χ-test p-val test χ-control p-val control df

Identity 7083.9 0.001 4.43 1 25
Breed 125.58 0.001 0.71 0.40 1
Sex 286.31 0.001 0.20 0.90 2
Fearfulness 207.39 0.001 2.93 0.23 2
Sensitivity 382.3 0.001 1.83 0.61 3
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the neural machinery of kinematic gestalt processing in 
mammals processes limb movements in a non-linear space 
by which the relevant features are extracted from a high-
dimensional space and then processed in a parallel coac-
tive fashion. This processing is a reasonable assumption 
to support the demand for efficient neural processing that 
can potentially allow for rapid decision making. One way to 
optimise the representational embedding of kinematic fea-
tures is by reducing high dimensionality to a subspace that 
represents most kinematic variance. Reducing dimensional-
ity, therefore, reduces processing time and storage space. To 
simulate this biologically plausible process, we optimised 
the feature selection process using a sequential feature selec-
tion approach, selecting the 20 features that sequentially add 
most of increment in correct prediction.

Social information from movement

Our choice of social attributes (identity, sex, breed and 
personality factors) was practically and not theoretically 
motivated, mainly due to ease of accessibility. Our goal 
was to demonstrate the principles of a new methodology, 
but we predict that social information contained in move-
ment patterns goes beyond the small number of attributes 
we chose in this study. Nevertheless, the current attributes 
may have relevance in wild horses in the following ways. 
First, attributes such as identity, sex or breed (representa-
tive of morphological features) may be important in rapid 
assessments by stallions in their attempts to monopolise a 
group of mares. While mares tend to lead social groups to 
resources, stallions tend to follow in the rear (Briard et al. 
2017), suggesting that rapid identification at larger distances 
is essential for them. Similar arguments could be made for 
mares, if there is a danger of infanticide by out-group males. 
Furthermore, personality traits, such as fearfulness, may be 
important in rapid assessments of unfamiliar rivals or sexual 
partners (Linklater et al. 2000; McDonnell and Haviland 
1995; Miller and Denniston 1979).

A quantitative approach to ethology

Ethology aims to address biological questions about ani-
mal behaviour in natural conditions. The classic meth-
odological approach has always been to first determine 
a species’ behavioural repertoire, the ‘ethogram’, to 
code behavioural elements according to different sam-
pling regimes (Altmann 1974). Although this has been 
an extremely successful and productive approach, its 
main weakness is that behavioural elements are subjec-
tively coded by human observers, rather than by objective 

measurements. The difficulties of this approach is well 
illustrated, for example, in ape gestural studies, where 
observational studies on gesture repertoires of wild chim-
panzees can generate wildly different results [N = 66 ges-
tures (Hobaiter and Byrne 2011, 2014); N = 30 gestures 
(Roberts et al. 2012)], even if collected from the same 
community. Thus, the quest to standardize behavioural 
repertoires is a challenging task and recording the full 
behavioural repertoire of a species via traditional etho-
grams is nearly impossible, and even partial descriptions 
of repertoires are extremely time-consuming and highly 
subjective.

The advent of inertial sensor techniques in digital infor-
mation processing provides a new and powerful tool to 
record continuous movement data from freely moving ani-
mals in their natural environment and, therefore, opens the 
doors to novel and more objective sampling regimes. Inertial 
measurement units (IMU), routinely used in air- and space-
craft, log body-specific forces at high frequencies locally 
on a memory device (logger). Data logging via IMUs is an 
automated and entirely objective process, allowing measure-
ments of animals in the wild, out-of-sight and in difficult ter-
rain. With the novel technology, however, novel challenges 
rise, such as finding the right means of handling big data 
and algorithms for an automated classification of behaviour. 
Hence, new research routines ought to integrate methods of 
behavioural animal science and machine learning. Along 
the line of the previous research programs (Gerencser et al. 
2013; Graf et al. 2015), we here present one way of combin-
ing the two fields.

Conclusion

In this study we showed that movement patterns of freely 
moving animals contain a large amount of socially relevant 
information, which potentially can be accessed by conspecif-
ics. Information transfer via movement patterns, therefore, 
follows a principle of subtlety rather than conspicuousness, a 
principle of information transfer in animals which is largely 
unexplored.

Furthermore, our study offers a new tool to investigate 
behavioural patterns in a wide range of animals. Bio-logging 
via inertial sensor techniques replace video camera record-
ing and its extensive analysis procedure. An expert system, 
as presented here, helps automating ethological investiga-
tions in that it classifies movement patterns of freely mov-
ing animals into meaningful classes. Future directions might 
incorporate unsupervised learning algorithms, implying that 
no a-priori assumption about attribute labels is required.
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