This study investigated the ability of replacement gilts to adapt their calcium and phosphorus utilization and their kinetics in bone mineralization to compensate for modified intake of these nutrients by applying a novel Ca and P depletion and repletion strategy. A total of 24 gilts were fed according to a two-phase feeding program. In the first phase, gilts (60–95 kg BW) were fed ad libitum a depletion diet providing either 60% (D60; 1.2 g digestible P/kg) or 100% (D100; 2.1 g digestible P/kg) of the estimated P requirement. In the second phase, gilts (95–140 kg BW) were fed restrictively (aim: 700–750 g/d BW gain) a repletion diet. Half of the gilts from each depletion diet were randomly assigned to either a control diet or a high-P diet (R100 and R160; with 2.1 and 3.5 g digestible P/kg, respectively) according to a 2 X 2 factorial design, resulting in four treatments: D60-R100, D60-R160, D100-R100 and D100-R160. Dualenergy X-ray absorptiometry was used to measure whole-body bone mineral content (BMC), bone mineral density (BMD) and lean and fat tissue mass on each gilt at 2-week intervals. The depletion and repletion diets, fed for 5 and 8 weeks, respectively, did not influence growth performance. The D60 gilts had a reduced BMC and BMD from the second week onwards and ended (95 kg BW) with 9% lower values than D100 gilts (P < 0.001). During repletion, D60 gilts completely recovered the deficit in bone mineralization from the second and fourth week onwards, when fed R160 (D60-R160 vs D100-R160) or R100 (D60-R100 vs D100-R100) diets, respectively (treatment time interaction, P < 0.001); thus, the depletion diets did not affect these values at 140 kg BW. These results illustrate the rapid homeostatic counter-regulation capacity of dietary Ca and P, and they show the high potential to limit dietary digestible P concentration by completely excluding the use of mineral phosphates during the depletion phase, representative of the fattening period, without causing any detrimental effects to gilts at mating. The gilts were able to recover their BMC deficit between their selection at 95 kg BW and first mating at 140 kg BW by increasing their dietary Ca and P efficiency. Finally, excess dietary digestible P, requiring increased amounts of mineral phosphates, further increased the gilts’ BMC.
Floradin P., Létourneau-Montminy M.-P., Pomar C., Schlegel P.
Development of bone mineralization and body composition of replacement gilts fed a calcium and phosphorus depletion and repletion strategy.
Animal, 16, 2022.
Download englisch (572 kB)
ISSN Print: 1751-7311
ISSN Online: 1751-732X
Digital Object Identifier (DOI): https://doi.org/10.1016/j.animal.2022.100512
Publikations-ID (Webcode): 49446
Per E-Mail versenden