Microbial byproducts and residues (hereafter ‘necromass’) potentially play the most critical role in soil organic carbon (SOC) sequestration. However, little is known about the influence of climate warming on necromass accumulation in the soil and the underlying mechanisms associated with microbial life strategies. In order to address these knowledge gaps, we used amino sugars as biomarkers of microbial necromass, and investigated their variation through an 8-year trial in an agroecosystem with two warming levels (+1.6 and + 3.2 °C) compared to ambient temperature. The results showed that the lower warming level had no impact on total microbial necromass carbon. Conversely, warming the soil 3.2 °C above ambient increased total microbial necromass by 17 % and its contribution to SOC by 21.3 %, mainly by increasing fungal necromass (+19.8 %), whereas +3.2 °C warming had no impact on bacterial necromass. At the phylum level, compared with the ambient control, +3.2 °C warming induced an increase in the abundance of Proteobacteria and a decrease in both Acidobacteria and Actinobacteria, whereas in the fungal community, Ascomycota increased and Mortierellomycota decreased. This indicates that r-strategists outcompete K-strategists in warmer climates, which led to increased microbial necromass production and accumulation, as supported by the positive correlation between r-strategists and microbial necromass. Stronger microbial competition for resources also resulted in a higher biomass turnover rate, greater cell death, and greater production of microbial necromass. This was supported by the lower bacterial and fungal network complexity and trophic links under warming conditions. In addition, the necromass generated from accelerated microbial turnover further offsets warming-induced deceases in microbial biomass. Consequently, bulk SOC did not change, despite microbial necromass having a much greater response to warming than the soil C pool. Therefore, future climate warming may influence the composition and persistence of SOC during microbial degradation.
Zhou J., Liu Y., Liu C., Zamanian K., Feng W., Steiner S., Shi L., Guillaume T., Kumar A.
Necromass responses to warming: A faster microbial turnover in favor of soil carbon stabilisation.
Science of the Total Environment, 954, 2024, Artikel 176651.
ISSN Print: 0048-9697
ISSN Online: 1879-1026
Digital Object Identifier (DOI): https://doi.org/10.1016/j.scitotenv.2024.176651
Publikations-ID (Webcode): 57484
Per E-Mail versenden