Redox-active biochars can enhance contaminant transformation in persulfate-based Fenton-like water treatment by facilitating Fe(III) reduction to Fe(II). However, biochar properties vary greatly depending on both feedstock
selection and pyrolysis conditions. Best suited biochars for Fe(III) reduction and persulfate activation have yet to be identified. Here, we investigated eight biochars for their ability to activate persulfate with Fe(III) to transform
N,N-diethyl-m-toluamide (DEET) in water. Four of the biochars were produced from beech wood under different pyrolysis conditions (450–750°C, high and low nitrogen flow rate in the reactor) and four biochars were produced
from softwood amended with 0 – 43 weight percent (wt%) wood ash prior to pyrolysis at 500 ◦C. Beech wood biochar produced at 450°C transformed DEET most efficiently with a half-life time of 39 ± 4 min, likely due to the high concentration of surface oxygen functional groups and persistent free radicals that accelerated Fe(III) reduction and formation of reactive species. Among the ash-amended biochars, biochar with 16 wt% ash amendment showed the most efficient DEET transformation with a half-life time of 27 ± 0.6 min, which is 10-times faster compared to a non-ash-amended biochar produced from the same biomass under similar pyrolysis conditions. Ash amendment led to the formation of crystalline iron minerals in biochars, which likely promoted Fe(III) reduction and persulfate activation. Our results highlight the potential for fine-tuning the redox properties of biochar, e.g., by ash amendment to a woody feedstock, enabling tailored performance for specific water treatment applications.