Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.
Laurent M., Bougeard S., Caradec L., Ghestem F., Albrecht M., Brown M. J. F., De Miranda J., Karise R., Knapp J., Serrano J., Potts S. G., Rundlöf M., Schwarz J., Attridge E., Babin A., Bottero I., Cini E., De la Rúa P., Di Prisco G., Dominik C., Dzul D., García Reina A., Hodge S., Klein A. M., Knauer A., Mand M., Martínez López V., Serra G., Pereira-Peixoto H., Raimets R., Schweiger O., Senapathi D., Stout J. C., Tamburini G., Costa C., Kiljanek T., Martel A.-C., Le S., Chauzat M.-P.
Novel indices reveal that pollinator exposure to pesticides varies across biological compartments and crop surroundings.
Science of the Total Environment, 927, 2024, 1-12.
ISSN Print: 0048-9697
ISSN Online: 1879-1026
Digital Object Identifier (DOI): https://doi.org/10.1016/j.scitotenv.2024.172118
ID pubblicazione (Codice web): 56008
Inviare via e-mail