Cyst nematodes are persistent soilborne pests that severely impact crop productivity worldwide. Their protective cysts enable long-term survival and host diverse fungal communities that remain largely unexplored as potential sources of biological control agents. In this study, we isolated culturable fungi from cysts of Globodera, Heterodera, and Punctodera, as well as from soils collected across Swiss potato fields between 2018 and 2024. Sequencing identified 78 fungal operational taxonomic units (OTUs), predominantly belonging to Ascomycota (73%), mainly Sordariomycetes (59%) and Eurotiomycetes (8%), with additional representatives from Mortierellomycota and Basidiomycota. Fusarium was the most abundant genus, followed by Clonostachys, Chaetomium, and Pochonia, while 28% of isolates remained unclassified, indicating potentially novel taxa. Selected fungi, including Orbilia brochopaga CH-02, Clonostachys rosea CH-04 and CH-15, and Pochonia chlamydosporia CH-51, significantly reduced motility, infection and root galling of Meloidogyne incognita in vitro and in planta. Notably, CH-02 reduced root galling by 63%, highlighting its strong mechanical and antagonistic activity. These results demonstrate that cyst nematodes harbor a rich and functionally diverse fungal community with substantial biocontrol potential, providing a foundation for developing sustainable and environmentally friendly alternatives to chemical nematicides in crop protection.