High spatial and thematic resolution of Land Use/Cover (LU/LC) maps are central for accurate watershed analyses, improved species, and habitat distribution modeling as well as ecosystem services assessment, robust assessments of LU/LC changes, and calculation of indices. Downscaled LU/LC maps for Switzerland were obtained for three time periods by blending two inputs: the Swiss topographic base map at a 1:25,000 scale and the national LU/LC statistics obtained from aerial photointerpretation on a 100 m regular lattice of points. The spatial resolution of the resulting LU/LC map was improved by a factor of 16 to reach a resolution of 25 m, while the thematic resolution was increased from 29 (in the base map) to 62 land use categories. The method combines a simple inverse distance spatial weighting of 36 nearest neighbors’ information and an expert system of correspondence between input base map categories and possible output LU/LC types. The developed algorithm, written in Python, reads and writes gridded layers of more than 64 million pixels. Given the size of the analyzed area, a High-Performance Computing (HPC) cluster was used to parallelize the data and the analysis and to obtain results more efficiently. The method presented in this study is a generalizable approach that can be used to downscale different types of geographic information.
Giuliani G., Rodila D., Külling N., Maggini R., Lehmann A.
Downscaling Switzerland land use/land cover data using nearest neighbors and an expert system.
Land, 11, (5), 2022, 1-21.
Téléchargement anglais (10834 kB)
ISSN Print 2073-445X
Digital Object Identifier (DOI): https://doi.org/10.3390/land11050615
ID publication (Code web): 49387
Envoyer par e-mail